Основы сетей и протоколов интернет
Здравствуйте, в этой статье мы постараемся ответить на вопрос: «Основы сетей и протоколов интернет». Если у Вас нет времени на чтение или статья не полностью решает Вашу проблему, можете получить онлайн консультацию квалифицированного юриста в форме ниже.
Передать данные очень просто. Если требуется согласие, то его нужно дать в письменной форме или в виде электронной записи. Однако учтите, что регистрируясь на сайте интернет-магазина, нельзя передавать пин-коды карты.
Англичанами принято употреблять множественное число – data. Славянофилов просим избегнуть упреков. Современная наука развита Европой – наследницей Римской империи. Вопрос намеренного уничтожения отечественной истории обойдем, оставив прения историкам. Некоторые эксперты возводят этимологию к древнему индийскому слову dati (дар). Даль называет данными бесспорные, очевидные, известные факты произвольного толка.
Это интересно! Литературный английский язык (газета Нью-Йорк таймс) слово data лишает числа. Употребляют как придется: множественное, единственное. Учебники чаще проводят жесткое деление. Единственное число – datum. Отдельный вопрос касается артикля, здесь обсуждаться не будет. Эксперты склонны считать существительное «массовым».
Поколения сотовых технологий
Стандарт NMT, как правило, относится к поколению 1G. Технологии GPRS и EDGE часто классифицируются как 2G, HSDPA — как 3G, LTE — как 4G. Следует отметить, что у каждого из отмеченных решений есть конкурентные аналоги. Например, к таковым в отношении LTE некоторые специалисты относят WiMAX. Другие конкурентные в отношении LTE решения на рынке 4G-технологий — 1xEV-DO, IEEE 802.20. Есть точка зрения, по которой стандарт LTE все же не вполне корректно классифицировать как 4G, поскольку по максимальной скорости он немного не дотягивает до показателя, определенного в отношении концептуального 4G, который составляет 1 Гбит/сек. Таким образом, не исключено, что в скором времени на мировом рынке сотовой связи появится новый стандарт, возможно, еще более совершенный, чем 4G и способный обеспечивать передачу данных со столь впечатляющей скоростью. Пока же в числе тех решений, что внедряются наиболее динамично, — LTE. Ведущие российские операторы активно модернизируют соответствующую инфраструктуру по всей стране — обеспечение качественной передачи данных по стандарту 4G становится одним из ключевых конкурентных преимуществ на рынке сотовой связи.
Бизнес: • Банки • Богатство и благосостояние • Коррупция • (Преступность) • Маркетинг • Менеджмент • Инвестиции • Ценные бумаги: • Управление • Открытые акционерные общества • Проекты • Документы • Ценные бумаги — контроль • Ценные бумаги — оценки • Облигации • Долги • Валюта • Недвижимость • (Аренда) • Профессии • Работа • Торговля • Услуги • Финансы • Страхование • Бюджет • Финансовые услуги • Кредиты • Компании • Государственные предприятия • Экономика • Макроэкономика • Микроэкономика • Налоги • Аудит
Промышленность: • Металлургия • Нефть • Сельское хозяйство • Энергетика
Строительство • Архитектура • Интерьер • Полы и перекрытия • Процесс строительства • Строительные материалы • Теплоизоляция • Экстерьер • Организация и управление производством
Поколения сотовых технологий
Стандарт NMT, как правило, относится к поколению 1G. Технологии GPRS и EDGE часто классифицируются как 2G, HSDPA — как 3G, LTE — как 4G. Следует отметить, что у каждого из отмеченных решений есть конкурентные аналоги. Например, к таковым в отношении LTE некоторые специалисты относят WiMAX. Другие конкурентные в отношении LTE решения на рынке 4G-технологий — 1xEV-DO, IEEE 802.20. Есть точка зрения, по которой стандарт LTE все же не вполне корректно классифицировать как 4G, поскольку по максимальной скорости он немного не дотягивает до показателя, определенного в отношении концептуального 4G, который составляет 1 Гбит/сек. Таким образом, не исключено, что в скором времени на мировом рынке сотовой связи появится новый стандарт, возможно, еще более совершенный, чем 4G и способный обеспечивать передачу данных со столь впечатляющей скоростью. Пока же в числе тех решений, что внедряются наиболее динамично, — LTE. Ведущие российские операторы активно модернизируют соответствующую инфраструктуру по всей стране — обеспечение качественной передачи данных по стандарту 4G становится одним из ключевых конкурентных преимуществ на рынке сотовой связи.
В конце 1990 года, когда появились первые предсказания исчерпания адресного пространства IPv4, Тематическая группа по технологии Интернет (Internet Engineering Task Force, IETF) инициировала работу над IP-протоколом нового поколения, названным IP Next Generation, IPng. (На сегодняшний день это синоним IPv6.) В ноябре 1994 года был утвержден, а в январе 1995 года официально опубликован проект [14], завершивший период концептуальных дискуссий и положивший начало реальной стандартизации IPv6. В этом документе сформулированы основные требования к IPv6 и методы достижения поставленных целей, как краткосрочных, так и долгосрочных.
Протокол IPv6 проектировался как преемник IPv4. Все, что в IPv4 было хорошо, должно остаться. Все, что не использовалось на практике, должно быть удалено. Недостатки, естественно, должны быть исправлены. В необходимых случаях функциональность IP должна быть расширена.
Важнейшие инновации IPv6 состоят в следующем:
- упрощен стандартный заголовок IP-пакета;
- изменено представление необязательных полей заголовка;
- расширено адресное пространство;
- улучшена поддержка иерархической адресации, агрегирования маршрутов и автоматического конфигурирования адресов;
- введены механизмы аутентификации и шифрования на уровне IP-пакетов;
- введены метки потоков данных.
В IPv6 сохранена архитектурная простота, присущая IPv4 и ставшая одной из главных составляющих феноменального успеха IP-сетей. Основные принципы остались прежними. Все изменения планировались таким образом, чтобы минимизировать изменения на других уровнях протокольного стека TCP/IP.
Размер IP-адреса увеличен до 128 бит (16 байт). Даже с учетом неэффективности использования адресного пространства, являющейся оборотной стороной эффективной маршрутизации и автоматического конфигурирования, этого достаточно, чтобы обеспечить объединение миллиарда сетей, как того требовали документы IETF. Любопытно отметить, что на предварительном этапе обсуждалось четыре предложения, касающиеся размера IP-адреса:
- 8 байт (этого в принципе достаточно, а более длинные адреса будут расходовать полосу пропускания);
- 16 байт (эта “золотая середина” в итоге победила);
- 20 байт (для унификации с OSI-сетями);
- адреса переменной длины (для снятия всех противоречий.
Поддержка классов обслуживания – одна из горячих тем современных сетевых технологий, и протокол сетевого уровня, такой как IPv6, должен предоставить основу для реализации подобной поддержки.
В спецификациях IPv6 [15] поддерживать классы обслуживания помогают два поля – Prio. и Flow Label (см. выше рис. 3). Первое задает желательную приоритетность доставки данного пакета относительно других пакетов из того же источника. Возможные приоритеты делятся на два диапазона. Значения от 0 до 7 используются для потоков данных, на интенсивность которых источник может воздействовать. TCP-трафик принадлежит к этой категории, поскольку при перегрузке сети скорость отправки пакетов снижается. Диапазон от 8 до 15 предназначен для трафика “реального времени”, интенсивность которого определяется внешними факторами.
Для управляемого трафика рекомендуется следующее распределение приоритетов:
0 – трафик неизвестной природы;
1 – трафик-”заполнитель” (например, сетевые новости);
2 – неинтерактивный трафик (например, электронная почта);
4 – массовый интерактивный трафик (например, передача файлов по FTP или NFS);
6 – обычный интерактивный трафик (например, telnet, X);
7 – управляющий трафик (например, протоколы маршрутизации, SNMP) (значения 3 и 5 зарезервированы).
Во втором диапазоне младшие значения (8) предлагается отвести для пакетов, с недоставкой которых при перегрузке сети отправитель готов смириться легче всего. Соответственно, приоритет 15 присваивается самым ценным пакетам, которые желательно доставить при любых условиях.
Поток, который помечается с помощью поля Flow Label, определяется как последовательность пакетов, посылаемых из определенного источника по определенному адресу (индивидуальному или групповому) с фиксированным приоритетом. Требуемый класс обслуживания может сообщаться маршрутизаторам посредством какого-либо управляющего протокола или с помощью данных, содержащихся в самих передаваемых пакетах (точнее, в дополнительных заголовках, обрабатываемых маршрутизаторами). Предполагается, что значение Flow Label используется как ключ хэширования при поиске информации, ассоциированной с потоком. По этой причине источник должен выбирать его псевдослучайным образом.
В настоящее время в поддержке классов обслуживания (не только для IPv6) больше вопросов, чем ответов. Ясно только, что ориентированные на практический выход экспериментальные подходы должны быть применимы и к IPv6, и к IPv4. В заголовке IPv4 имеется однобайтное поле Type of Service, которое целесообразно использовать для задания класса обслуживания.
Вероятно, из-за этого в новом проекте спецификаций IPv6 (см. [24]) граница между полями Prio. и Flow Label сдвинута на четыре бита вправо, вместо Prio. применяется термин “Traffic Class”, а само начало заголовка выглядит так, как показано на рис. 19.
В то же время, в трактовке полей Traffic Class и Flow Label не только не добавляется что-то новое, но и делается шаг назад по сравнению с [15]. Признается, что пока рано говорить о семантике этих полей, поскольку работы по поддержке классов обслуживания в рамках IP-протокола находятся на начальной стадии. С этим выводом нельзя не согласиться.
Англичанами принято употреблять множественное число – data. Славянофилов просим избегнуть упреков. Современная наука развита Европой – наследницей Римской империи. Вопрос намеренного уничтожения отечественной истории обойдем, оставив прения историкам. Некоторые эксперты возводят этимологию к древнему индийскому слову dati (дар). Даль называет данными бесспорные, очевидные, известные факты произвольного толка.
Это интересно! Литературный английский язык (газета Нью-Йорк таймс) слово data лишает числа. Употребляют как придется: множественное, единственное. Учебники чаще проводят жесткое деление. Единственное число – datum. Отдельный вопрос касается артикля, здесь обсуждаться не будет. Эксперты склонны считать существительное «массовым».
Канал в пакетной сети оператора (Frame Relay, ATM)
Объединение офисов через операторские сети Frame Relay и ATM была самой распространенной в недалеком прошлом. В общем случае для корпоративного заказчика схема подключения выгладит следующим образом (Рис. 4): каждый офис подключается одним (или несколькими) портами к сети передачи данных заказчика. После этого в пределах сети заказчика организуются виртуальные каналы, которые связывают его офисы.
Виртуальные каналы настраиваются программно и для каждого устанавливается собственная гарантированная скорость передачи данных, а офис достаточно подключить к сети оператора одним портом нужной пропускной способности. Программная настройка виртуальных соединений позволяет создавать новые соединения между офисами и легко менять параметры существующих соединений без изменения физической топологии сети.
По сравнению с сетью, построенной на выделенных каналах, где для каждого выделенного канала необходим физический порт на каждой стороне соединения, существенно уменьшается количество необходимых физических портов. За счет этого в каждом офисе возможно использовать более простое оборудование или обходиться меньшим количеством устройств.
Повышается и надежность данного вида соединения. Поскольку внутри сети оператора обычно уже используются собственные механизмы повышения отказоустойчивости, то заказчику достаточно зарезервировать только собственное оборудование доступа и «последнюю милю» от своего оборудования до сети оператора связи.
Стоимость такого решения для заказчика также обычно ниже, чем при использовании выделенных синхронных/асинхронных каналов благодаря следующим факторам:
- нужно меньше оборудования;
- стоимость каждого виртуального канала ниже стоимости соответствующего физического канала (за счет использования недозагруженной полосы пропускания одних соединений другими).
Тем не менее в настоящее время такие подключения следует делать только если используются какие-либо специфические приложения или при подключении новых офисов к корпоративной сети, которая уже объединена по данной технологии, поскольку по многим потребительским параметрам такие сети уступают сетям IP VPN.
Типовые скорости каналов Frame Relay – до 2 Мбит/с. Часто этих скоростей уже недостаточно для современных приложений. ATM – от 2 до 155 Мбит/с, однако такие подключения распространены относительно мало, а стоимость порта и канала ATM превышает стоимости IP/MPLS-каналов аналогичной скорости.
По уровню безопасности виртуальные FR/ATM каналы несколько уступают выделенным линиям. Трафик одного клиента, передаваемый по сети Frame Relay, отделен от трафика другого клиента и не может попасть в его сеть. Однако данное разделение – программное и может быть нарушено незаметно для пользователя, например из-за ошибки оператора.
Multicast — это рассылка сообщения на группу устройств, которые «хотят» получать эти данные. Это очень похоже на вебинар. Он транслируется на весь Интернет, но подключаются к нему только те люди, которым данная тематика интересна.
Такая модель передачи данных называется «издатель-подписчик». Есть один издатель, который отправляет данные и подписчики, которые эти данные хотят получать — подписываются на них. При multicast-рассылке сообщение отправляется с реального устройства. В качестве Source MAC в фрейме указывается MAC-отправителя. А вот в качестве Destination MAC — виртуальный адрес. Устройство должно подключиться к группе, чтобы получать данные из нее. Коммутатор перенаправляет информационные потоки между устройствами — он запоминает, с каких портов данные передаются, и знает, на какие порты эти данные нужно отправлять.
Какие ещё протоколы используются в Интернете
Помимо выше указанных, для сети существуют и другие решения. У каждого свои особенности:
- MAC, или Media Access Control отвечает за идентификацию устройств в Сети на одном из самых низких уровней. Уникальным MAC-адресом снабжается каждое приспособление, которое подключается к Сети. Эту информацию задаёт ещё производитель. Физические адреса используются в случае с локальными сетями, по которым передают сведения. Это один из немногих протоколов, до сих пор остающийся достаточно популярным.
- DNS — протокол для передачи файлов. Отвечает за преобразование в сложные IP-адреса данных, которые раньше были легко понятны и читаемы. Обратный порядок преобразования тоже работает. Благодаря этому становится просто получать доступ к сайтам с помощью доменного имени.
- SSH реализуется для удалённого управления системой с участием защищённого канала. Этот вариант для работы используют многие технологии.
Основы протоколов Интернета вещей
Протоколы позволяют узлам иметь структурированный способ взаимодействия между собой. Поскольку потребности и варианты использования устройств IoT за последние несколько лет быстро изменились, то же самое произошло и с протоколами. Всего существует два основных типа протоколов: сетевой и протокол данных. Эта классификация исходит из модели OSI (взаимосвязи открытых систем), широко используемой в коммуникационных сетях ИТ. Далее вы можете получить общее представление об основных сетевых протоколах IoT.
Bluetooth: этот протокол работает на частоте 2,4 ГГц и может использоваться для приложений с малым радиусом действия (менее 100 м). Еще одним шагом вперед в его развитии является Bluetooth с низким энергопотреблением (BLE), который представляет собой значительное снижение мощности, необходимой для этого протокола. Протокол Bluetooth может быть полезен для передачи небольших объемов данных от датчиков или носимых устройств. Пример схемы сети узла можно увидеть на следующем рисунке.
Сравнение ряда технологий
Начнем с левого нижнего угла рисунка и сравним между собой технологии Bluetooth и ZigBee. Результаты сравнительного анализа представлены в виде таблицы 2.
Bluetooth | ZigBee |
Назначение | |
Для построения сетей связи динамической структуры (постоянно добавляются новые элементы и выходят из сети имеющиеся, конфигурация топологии сети изменяется) | Сети передачи данных со статической структурой (топология сети длительное время постоянна, номенклатура элементов изменяется редко) |
Беспроводная передача звуковых сигналов (речи) | Большое число оконечных устройств |
Передача неподвижной графики и изображений | Большая длительность периода обращения главной станции сети оконечным устройствам |
Передача файлов | Передача пакетов данных небольшой величины |
Отличия радиоинтерфейсов | |
Программная перестройка радиочастоты (FHSS) | Прямое расширение спектра (DSSS) |
Скорость передачи:1 МБод, пиковая скорость передачи данных ~720 кбит/с | Скорость передачи:62,5 кБод,4 бит/символ, пиковая скорость передачи данных ~128 кбит/с |
Энергопотребление | |
Организовано аналогично мобильному телефону (регулярная подзарядка) | 2+года от пары батареек типа ААА |
Обеспечивает максимальную производительность сети данной структуры | Оптимизировано для режима «сна » оконечного устройства |
Временные параметры протоколов | |
Оптимизированы для работы сети в критических ситуациях: | |
Время «прописки » нового оконечного устройства в сети не менее 3 с | Время «прописки » нового оконечного устройства в сети 30 мс |
Время перехода оконечного устройства из режима сна в активный режим 3 с | Время перехода оконечного устройства из режима сна в активный режим 15 мс |
Время доступа главной станции к активному оконечному устройству 2 мс | Время доступа главной станции к активному оконечному устройству 15 мс |
Особенности реализации | |
Низкая стоимость расширения сети | Минимальная стоимость оконечных устройств |
Расширенная программная поддержка за счет возможностей ПК | Минимальное программное обеспечение и недорогой процессор (80С51) |
Реализация возможностей протоколов IEEE802.11x при наличии упрощенного радиооборудования | Отсутствие необходимости поддержки работы оконечного устройства со стороны ПК |
Ориентация на производство интегрированных чипов для различных приложений |
Канал в пакетной сети оператора (Frame Relay, ATM)
Объединение офисов через операторские сети Frame Relay и ATM была самой распространенной в недалеком прошлом. В общем случае для корпоративного заказчика схема подключения выгладит следующим образом (Рис. 4): каждый офис подключается одним (или несколькими) портами к сети передачи данных заказчика. После этого в пределах сети заказчика организуются виртуальные каналы, которые связывают его офисы.
Виртуальные каналы настраиваются программно и для каждого устанавливается собственная гарантированная скорость передачи данных, а офис достаточно подключить к сети оператора одним портом нужной пропускной способности. Программная настройка виртуальных соединений позволяет создавать новые соединения между офисами и легко менять параметры существующих соединений без изменения физической топологии сети.
По сравнению с сетью, построенной на выделенных каналах, где для каждого выделенного канала необходим физический порт на каждой стороне соединения, существенно уменьшается количество необходимых физических портов. За счет этого в каждом офисе возможно использовать более простое оборудование или обходиться меньшим количеством устройств.
Повышается и надежность данного вида соединения. Поскольку внутри сети оператора обычно уже используются собственные механизмы повышения отказоустойчивости, то заказчику достаточно зарезервировать только собственное оборудование доступа и «последнюю милю» от своего оборудования до сети оператора связи.
Стоимость такого решения для заказчика также обычно ниже, чем при использовании выделенных синхронных/асинхронных каналов благодаря следующим факторам:
- нужно меньше оборудования;
- стоимость каждого виртуального канала ниже стоимости соответствующего физического канала (за счет использования недозагруженной полосы пропускания одних соединений другими).
Тем не менее в настоящее время такие подключения следует делать только если используются какие-либо специфические приложения или при подключении новых офисов к корпоративной сети, которая уже объединена по данной технологии, поскольку по многим потребительским параметрам такие сети уступают сетям IP VPN.
Типовые скорости каналов Frame Relay – до 2 Мбит/с. Часто этих скоростей уже недостаточно для современных приложений. ATM – от 2 до 155 Мбит/с, однако такие подключения распространены относительно мало, а стоимость порта и канала ATM превышает стоимости IP/MPLS-каналов аналогичной скорости.
По уровню безопасности виртуальные FR/ATM каналы несколько уступают выделенным линиям. Трафик одного клиента, передаваемый по сети Frame Relay, отделен от трафика другого клиента и не может попасть в его сеть. Однако данное разделение – программное и может быть нарушено незаметно для пользователя, например из-за ошибки оператора.